Comparison of Support Vector Machine and Back Propagation Neural Network in Evaluating the Enterprise Financial Distress

نویسندگان

  • Ming-Chang Lee
  • To Chang
چکیده

Recently, applying the novel data mining techniques for evaluating enterprise financial distress has received much research alternation. Support Vector Machine (SVM) and back propagation neural (BPN) network has been applied successfully in many areas with excellent generalization results, such as rule extraction, classification and evaluation. In this paper, a model based on SVM with Gaussian RBF kernel is proposed here for enterprise financial distress evaluation. BPN network is considered one of the simplest and are most general methods used for supervised training of multilayered neural network. The comparative results show that through the difference between the performance measures is marginal; SVM gives higher precision and lower error rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines

In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...

متن کامل

A Neural Network Model Based on Support Vector Machine for Conceptual Cost Estimation in Construction Projects

Estimation of the conceptual costs in construction projects can be regarded as an important issue in feasibility studies. This estimation has a major impact on the success of construction projects. Indeed, this estimation supports the required information that can be employed in cost management and budgeting of these projects. The purpose of this paper is to introduce an intelligent model to im...

متن کامل

A Robust Methodology for Prediction of DT Wireline Log

DT log is one of the most frequently used wireline logs to determine compression wave velocity. This log is commonly used to gain insight into the elastic and petrophysical parameters of reservoir rocks. Acquisition of DT log is, however, a very expensive and time consuming task. Thus prediction of this log by any means can be a great help by decreasing the amount of money that needs to be allo...

متن کامل

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1007.5133  شماره 

صفحات  -

تاریخ انتشار 2010